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1.

A mathematical analysis has been carried out for unsteady state heat -on-

duction through a simple two layer system consisting of a thin layer of material

(cloth) at various distances from a semi-infinite solid (skin) shown in Jig. I

anA the temperature variationa with time at various points on the system have

been obtained by solving the appropriate heat flow equations. Curves have been

drawn for different spacings between the cloth and main body and also for d~if-

ferent spacings between the cloth and main body and also for different (thermal

conductivity) (volumetric heat capacity) ratios (body an sof . I where sub-

scripts m and c refer to main body and cloth respectively.

Sxperiments were designed to determine whether the model shown in Jig. I

was amenable to the mathematical analysis. The model consisted of cotton sateen

over a polyethylene block (main body) and separated from it by an air space of

known thickness. Temperature vs. time relationships were measured for the front

and back cloth surfaces aud thepolyetbylene surface by irradiating the model oan

a solar furnace.

The results obtained were lacking somewhat in their reproducibility and in

general the correlation between the theoretical and experimental curves was not

very good. It is strongly believed that the moisture of the cloth is liberated

in an explosive manner which complicates the mechanism of simple heat conduction.

Various avenues exist for surmounting this difficulty. One method is to enclose

the sample in a constant iumidity container attached to the solar furnace with

a shutter which opens simultaneously with the shutter of the furnace. Another

method is to study the vapor loss as a function of time from a piece of fabric

originally conditioned in an atmosphere of saturated water vapo. It would then

be possible to know the water content of each fabric at the time it is irradiated



if It vrax pretrentd J.n P- sati.i1xatedi at.mosphere. The Iatter approach will be

rused first.

Wnrk on the d.eveaopment of a. skin simulan)xt ,vith a I'stretch factor" has been

completed and will be i'sed. in future runs. This skin simullant, it is believed,)

will be able to simulate temperatures of the skin (when irradiated) at various

"stretched" depths equivalent to smaller depths in the skin.

h.1
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The study of damage suffered by human skin when exposed to high intensity

radiant heat fluxes liberated by an atomic explosion is of considerable impor-

tance. In particular, it is very important to be able to evaluate to what

extent clothing materials are of practical utility in protecting skin. This

report discusses in detail 1) the approach used in studying this problem and

points out the controlling variables which determine the value of a piece of

clothing material as a protective barrier against high intensity thermal radia-

tion, 2) the techniques employed in studying this problem.

The problem of measuring the degree of damage suffered by organic materials

such as human skin is in itself complex and not well undprstood at the present.

Accelerated chemical decomposition and liberation of water, moisture and other

volatile components are known to occur when the temperature of organic materials

is raised high above normal temperatures. A direct measure might be a complete -

chemical analysis of the material before and after irradiation. Such a proce-

dure is unduly complicated and unsuitable for the present project.

The second approach is to measure the temperature history of an irradiated

skin. Xvidences indicate that the degree of damage of organic materials is a

function of the combined effects of the temperature level to which the material

is raised and the duration this temperature level is maintained (7).

Oonsequently the temperature history of the irradiated sample mq7 be used as

a measure of the degree of damage suffered. Comparison of the temperature his-

tnries of bare skin with that of skin protected by clothing will then serve as

an indication of the value of clothing as a protective material.

The availability of live skin for experimentation purposes poses a problem,

and it is necessary to find a skin simulant which when irradiated will behave
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in a manner which correspcods to hur.irn ckin in so far as temperature rises are

concernod. A discussion of the theoretical considerati•ns is presented which

forms the basis for the skin simulant recently developed on this project.

The simplest idealization of a system composed of a human body protected

by clothing material and which is susceptible to mathematical analysis is the two

layer system shown. in Fig. I. The cover represents the clothing material and the

body is represented by the main body. The problem at hand is to establish a

relationsi.p of temperature vs. time at various positions of the system when a

heat pulse ( XO( 0 ) is impinged on the ourface of the cover, (see Table of

Nomenclature for symbols) and to test these relationships experimentally.
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Unste!ay. State Heat Conductioin

Sstem of Eguations

The time variation of the temperatures st various points of the system of

Fig. I is obtained by solving the appropriate heat flow equations. In order to

simplify the mathematics the following assumptions will be made:

a) Heat flow only in the -x- direction i.e., the y and z directions are

infinite with uniform radiation striking the surface of the cover.

b) The cover may be thought of as an opaque uniform solid with an apparent

thickness x., apparent specific heat OC, apparent density P., and absorptivity

crr which remuins constant during irradiation.

c) The save aswuanptions are made for the m'ain body as for the cover, with

the exception of thickness which is assumed to extend infinitely back in the x

direction (subscript m refers to main body).

d) Heat losses from the front surface of the cover by conmetion and reriA'v-a

tion may be characterized by a oingle heat transfer coefficient U. •

e) Heat transfer from cover to main body through air gap may be characterized

by a similar heat transfer coefficient

b) and c) contains the assumpti-o of absence of chemical reaction during

Irradiation.

The following equations can be written with the above mentioned assumptions

in mind:

c / eCdLI
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which are sinmu1 the Fou-ier heat-conduction equiations for the two layers.

The approximate boundao_.tY conditiono f or those oqucatkons ax'

for the front surface of the cover; and

as the relationship between the back surface of the cover and the front sur-

face of the main body. Equation (4a) contains the assumption of zero heat

storage in the air gap.

Equations (la) and (2a) form a system of simultaneous partial differen-

tial equations with non-linear boundary conditions (3a) and (4a). An ex-

pedient through laborious technique of solving these equations is by the

Schmidt method of finite difference approximations.

It is desirable, at this point, to convert Equations (Ia) to (4a) into

dimensionless forms, which serve to generalize the numerical solutions. The

conversion of the four equations to dimensionless form will be carried out

for the sake of clarity and at the same time to point out the technique of

this conversion, Multiplying both sides of Equation (la) by the factor

~ 4L- Zyields!

c+Yrxc-cc)/-

Insertion of all quanatities under the differential sign and obserring the

rules of partial differentiation gives as a final result'

;2 r r4
- 7_ . .i

' /
! I /c{ 45
"/1 1 ,
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Similaxly, Equation (Pa) is convejicd to

F__/_-I t k I,

[____ __r (2-6)

r 7-rk C--

It is advisable to express (2b) in a slightly different form by multiplying both

sides of the equation by A, )) :

The reason for this alteration will become clear later.

The dimensionless forms of (Ua) and (4ýa) are obtained in identical mannor

and the final results arez

L L -J .o-

Throughout these equations the temyperature iE measured 'by the quantity

the position by d) in the cover anrd mainC j -772

body respeo, Lively. For the Gske of brevity, these imsensionless vpa•iablez will

be roplaced by the symbol S .s defined, In Table I.



Table I

Dimensionless Quantity Symbol

t k T

Lb.

The advantage of using the dimensionless parameters an e as

a measure of distance is indicated by Equation (4). This states that the dimen-

sionless temperature gradient at Y, r-= LC. and /, - are numerically

equal. Furthermore, this gradient is numerically equal to the slope of a line of

height / he- and distance of- .
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Method of Finite Difference Approximations

a) General Equations:

Equations (1) to (4) can be written in the finite difference form by trans-

forming the differentials to finite increments. For example, differential dimen-

sionless temperature gradient is written as:

_T w (T)
Xc

and.

ST_ _ aT

the second partial derivatives with respect to x may be written Ps:

ŽIETJ - LxE,,(T)]

and

YA{Tr] - ___E____)]

The time deriv'atiVas are similarly written as:

Ž(T)_ - E___

and

S(T) ___ _ [ _
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Throughout these equations, L x refers to partial differentiation with respect

to x and 4 refers to partial differentiation with respect to e
In finite difference form, Equations (1) to (4) will appear as:

E__ _& _ T ET1I

(6)
A(1 (r (u - (T Tsu) (7)
A ~ ((m)

UL"C --j)Lh~

b) Schmidt Technique

As an illustration of finite difference approximations to the solutions of

partial differential Equations (1) to (4), consider Fig. 2. The cover is divided

by an integral number (n) of construction lines (shown dotted) equally spaced from

each other. In Fig. P, n = 4 is used making

The construction lines are placed such that half of a construction slab ex-

tends beyondl the surfaces.

The main body construction liaes are separated a distance apar t) .

This separation depends on A as will be explained later; but for the
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moment assume that the main body has been correctly divided. At any time

after irradiation, the temperature profile in the two layers may be approximated

by the solid line as shown. The degree of approximation depends on the fineness

in which the layers are divided by the construction lines.

In terms of Fig. 2 then, Equation (5a) may be written as:

T = TMAuU l -TnOJ.AY Y.( -~

Both the dimensionless distance and time are independent variables, and their

choice is arbitrary for any particular series of calculations. The Schmidt method

uses a value of: m.)j (19)

which introduces some simplifications in the numerical work. Combining (5b) and

(9) gives:

Equation (5) provides a rule for the numerical calculations. It enables the cal-

culation of the temperature at time rV A&*- , from a knowledge of the tempera-

ture distribution at time n' 8e .

Similarly, the corresponding equation for the main body temperatures is:

if

The boundary condition (8) simply says that the dimensionless temperatures at

planes (e) and (f) are determined by a straight line connecting the temperatures

at plane (d) and (g), provided planes x = L C and X - 0 are separated by the

ditanc
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Boundary condition (7) is satisfied by placing a construction point 0 at a

distance Ac./Uo L, to the left of plane xc - 0 and Ar- /U6 LC above the

initial temperature To. It is clear from Fig.2A that a straight line drawn from

point 0 to the instantaneous temperature value of plane (b) will satisfy Equation

(7). This determines the value of the temperature at plane (a).

The purpose of extending the construction lines to a half slab thickness is

to obtain a better approximation to the actual situation. Notice that the surface

temperature gradient, in this manner, only extends a half slab thick into the layers;

while dividing the layer with the construction lines coincidentwith the surfaces

result in extending this gradient one whole slab division into the layers.

Equation (7) provides the information that the mapping of the construction

lines must be different for the two layers. However, an additional relationship is

required to fix the ratio /X/2 , as an arbitrary choice of AX4 still

leaves .L undetermined. Such a constraint is provided by Equations (9)

and (10).

To insure the condition that a unit change of A c.and AGM will give

exactly the same change of • in terms of seconds, then combining (9) and

(10) results in:
Sa (x2

or

Equation (11) provides the scaling factor for AXm in terms of A c when the

thermal prcperties of the two materials are known. It is the result of the com-

bined effects due to differences in thermal properties and the necessity of equali-

zir- the time in the two layers. Notice that if the thermal properties are identical

in the two layers, the construction lines are equally spaced in the two solids.
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Theory of Skin Simulant

One of the difficulties involved in obtaining a system for skin simulant is

finding a material which possesses the same conductivity, heat capacity and den-

sity as skin. A second difficulty arises when one attempts to measure temperatures

at specific depths below the skin surface. The theoretical discussion which ensues

describes a skin simulant which it is believed will satisfactorily embody the above

requirements.

In a semi-infinite solid, heat transmission is determined by the unique groups

S• •p/iT t and k where AT represents temperature

rise, k the thermal conductivity, t the time, and c r the volumetric heat capacity,

x the depth, andI 6'( the absorbed-radiation intensity. Since I o)• t-uid T are

variableg, the groups kc P azd A/c 0Y, should be the same in skin and sim-

ulant for proper modelling. With subscript s referring to simulant and sk for

skin, it follows that A c f ), / c p j) s and

/(k/ IO 3 s .A Furthermore:

A S P . S A ' e ) 5 * A k

and the depth x, of a point in the simulant corresponding to one in the skin will

be much greater if ke is munh larger and r, mch smaller than ksk and C P')SA

respectively. Since such a material does not exist, a copper fin device has been

adopted, consisting of 0.005" copper fins attached to a 0.0028 copper sheet with

0.125" air spaces between the fins. The fins provide high conductivity and the

1/8" air spaces between them the low volumetric heat capacity. Thus if the total

heat flow cross section of the fins is the fraction % times the area of the sur-

^ace to which they are attached, then the effective bulk condictivity of the fin

system is akcu and the effective bulk volume heat capacity is a(Le )c"
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For the copper fins selected the ratio xs/Xsk is 30/1 so that a system of

-fin 6 Mz MCP. wol c~rrnp!P t o 2 f flesh and. thurmocouplhýs-pxacad at

6 to 10 mm intervals can readily be placed in the sixtulant.

Design and construction of the copper-fin skin simulant has taken place

since the experiiments reported here mad no radiation tests with it have yet

been made. The polyethyvlene simulant. used in this work has thermal properties

in the same order of magnitude as those of skin, as shown in the following tabu-

lation (A);

k e
Material Cal cal gm('em)'('s'e'IT') QU 0"• OF ke• k/c

Polyethylene 8.0 x 10-4 0.55 0.92 0.506 4.05 x 10-4 15.8 x l0

Skin 10.6 x 10-4 0.8 8.5 K 104 13.3 x 10-4



Equipment

The experimental investigations were carried out by the utilization of a

solar furnace (Z) as the source of high intensity thermal radiation. Intensities

ranging up to 6.89 cal/cm" sec. were obtained during the summer months. The

mirrors and some of the auxiliary equiyment are housed in a steel-reinforced

wooden structure and this structure is fixed on an altaziwiuth mount. The pri-

mary mirrors (3" x 3 N), four hundred in all) which receive the direct radiation

from the sun are located at the rear of the housing and they in turn reflect the

sun's rays on a secondary mirror, which is trapezoidal in shape. The secondary

mirror reflects the radiation to the target area where the sample to be radiated

is placed.

The secondary mirror is located on a rotatable axis thus obviating the neces-

sity of having the target area exposed to the radiation during the period before

and after a run.

The shutter mechanism in the target area is operated by an automatic timer

using solenoids as the initiating adjuncts. Two shutters are used during the

operation, one exposing the sample to radiation, the second occluding radiation

at the end of the desired pulse.

The total radiation is measured by an Eppley Pyrheliometer and continuously

recorded by a Leeds and Northrup strip chart potentiometer. Blocking off the di-

rect rays of the sun provides a measure of the diffuse radiation, and the dif-

ference between the total and the surrounding radiation is the focussable inten-

sity on the primary mirrors of the furnace.

The sample models are composed basically of cotton sateen stretched

over a circular polyethylene block. The cloth contains two silver-constantan

thermocouples, one on each surface; a third thermocouple is located on the surface



I
!i 16.

of the polyethl•ene l - Otheher ........rtenarcs to the models mcroly ',-,o hold

the cloth and polyethylene in place and to provide electrical connection between

the thermocouples and the temperature recording instruments. In the cases where

studies were made with spacing between cloth and skin simnulant, a metal ring of

known thickness was inserted between the two.

Temperature repadings of the thvrmocouples were recorded by a Heiland type

photographic galvanometer.

The thermocouples were made from 0.001 inch constantan wire half of which was

plated with silver from a AL N bath. Close contact between the thermocouple and.

the cloth was achieved by weaving the couples into the cloth sarface. Contact

between the polyethylene block and its thermocouple and the covering when no

spacing was used was accomplished by machining a slight convex curvature in the

surface of the polyethylene.
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Procedure

Prior to the experimental runs, the samples were atsembled, after which the

resistances of the thermocouples were determined.. It was necessary to determine

the resistances of the couples and also the connecting lines since the recording

galvanometer which was employed ie a current-measuring instrument. The assembled

sample was then placed in the sample holder at the target area aid the thermo-

couple leads connected, after which the fu'n,, e wAq nligned to the sun end the

secondary mirror rotated to direct the radiation to the sample. At thiR point

the Heiland apparatus was set in motion. The shutter release also put the timer

in simultaneous operation. At the end of a pveset time the other shutter closed

off the radiation automatically.

In order to get the total radiation, it is necessary to determine the furnace

maltiplier by means of a silver disc calorimeter. The calculation of this mul-

tiplier is included in the appe: lix.
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Re su.t s

The results obtained from the irradiated samples are presented in

Figures 3-18 showing the temperature-time histories of the three surfaces

mentioned. The temperature and time scales are given in dimensionless

groups in Figs. 3-10 and in Figs. 11-18 the temperature and time scalus are

in terms of degrees centigrade and seconds respectively. For the purpose

of observing the effects of spacing the plots have been made (Figs. 3-10)

for the same color fabric. Theoretical temperature--time histories are shown

in Figs. 19-36, in the Appendix.

It should be mentioned that the transmissivity of the fabrics varies for

each color; the light colors have the largest values, while for black it is

practically zero. These values together with the absoxptivity constants

were obtained from the University of Rochester (3). A brief glance at

Table 3 shows that temperature rise diue to direct transmissiorn of heat

through the cloths can constitute a large percent of the total temperature

rise for surfaces covered with these cloths.
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fDiscussion of Results

A comparison of the predicted curves and the experimental curves reveals

much discrepancy for the cloth top and under surface(Fig. 3 However, the

correlation between the theoretical and experimental curves for the polyethy-

lene surface is fairly good.

The slopes of the experimental curves for the top surfaces are much lower

than the predicted slopes with the exception of the white fabric which was the

only sample which fits the theoretical slope. The value of the absorptivity

used for white cloth was 0.093; a value of 0.12 would give a correlation more

consistent with the other samples, as shown by Figure 3A..

It was suspected that perhaps a difference between the spectra of the sun

and the carbon arc source could cause different absorptivity values, since the

latter source was employed in determining absorptivity values, but a comparison

of these two spectra showed no important differences.

The smaller slopes of the cloth top surface appear to be the result of

a heat absorption by the inherent moisture content of the fabric. This mois-

ture would tend to increase the conductivity of the air gap between the cloth

and polyethylene surface than would be expected (Fig. 3).

The curves whose coordinates are in terms of degrees and seconds show the

effect of color on the temperature rise. The darker shades with higher absorp-

tivity give a steeper and higher temperature rise, than the light shades

(Figs. 11-18).

It is interesting to note that although the theory predicted a very small

difference in the slopes and temperature rise for the polyethylene surface

temperatures for 0.32 and 0.51 cm spacings, in the actual results the difference

was greater than expected. The mechanism whereby this difference came about
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is, in the absence of some means of direct observation largely a matter of

conjecture. It can be suea that the temperature rise for the cloth back

surface is instantaneous while for plain heat conduction there is quite a

lag. This deviation suggests that heat transfer to the back surface is also

by means of conduction and by other means, probably steam and/or direct radia-

tion. However no correction was made for this in the theory.

From the foregoing discussion it is apparent that the moisture associated

with the cloth is a variable hitherto unaccounted for, and anrt from uomplicat-

ing the mechanism of heat transfer, has aG lprevented reproducibility of re-

sults because the moisture content of the fabric at a&y moment depends on the

humidity of the ambient air. Preliminary studies have been carried out on

the rate of moisture loss from pieces of the fabric which were immersed in an

atmosphere saturated with water vapor. The results show that it requires

approximately 10 minutes in quiescent air for the cloth to be reduced to l/e

of its original water content. This information will be useful in future work

in knowing the wator content of the cloth samples irradiated.
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C onclusions

The simple treatment of heat conduction through a two layer system is

inadtequate to describe the heat transfer process through the model described.

This process is apparently complicated by the presence of moisture in the

cloth layer. However, the results do indicate that the lighter-shade fab-

rics give better protection from radiation damage than dark ones do, over

the first two seconds after exposure.



Future Work and Rcommend s

For future work it is recommended that:

1. The cloth samples be pretreated in a saturated atmosphere of water vapor

before irradiation. Application of the rate of loss of water vapor in air

should indicate the amount present at the time of irradiation, provided that

the cloth is properly protected from air currents.

2. The surface of the skin simulant developed will je blackened with a nen-

lustrous thin coating aud the simulantIs performance will be compared with

semi-infinite solid theory and with data obtained by other investigations.

3. The skin simulant with cloth coverings will then be irradiated.

4. If reproducibility is still unobtainable due to inability to know the

cloth moisture with sufficient accuracy, then it is suggested that a constant

humidity device be developed which is attachable to the furnace with a

shutter mechanism of the furnace.

I!
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Nomenclature

c Heat capacity

gm°C

Intensity of RHauation cal

kc = 0Conductivity cal

cm sec 00

L Thickness of cloth. cm

t Temperature 00.

A t = Temperature rise (00)

= Dimensionless temperatuxe rise I L.. k Q (o<,= absorptivity)
I Lco•

U = Heat Transfer coefficient CM!

cm- see 0G

Gr e__k

-k

Density

= Dimensionless time 0( L

Transmiissivity

Subscript

e refers to cloth

m refers to polyethylene
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Sample Calculation of Run

E.M.F.'direct = (E.MJ.Ptotal - E.M.F.iniirect) = (0.057 - 0.105)4

= 3.01 mv

Sensitivity of pyrheliometer = 2.45 mv/cal/min cm2

Time = D.S.T. - 1:00 + (Corr. for eq. of time + corr. for longitude) =

(11:43 - 1:00) + 0.19 = 11.02

Prom plot of Cos G vs Time: Cos 0 = 0.860 (corres. to 11:02 A.M.)

I (radiant intensity) = 3.01 x 289 6 6.89 cal/cm see.2.45 x 0.86

where furnace const 289.

Temperature-Time Calculations

Galvanometer Deflections = Y cm

Sensitivity of Galvanometer = 12.25 cm/m.a.

Thermocouple + Line resistances = 47.6 ohms

E.M.F. = x_-__ x 47.6 = 3.72 Y
12.25

Substitution of values of T at corresponding times X gives the

temperatu;'e-time history.

Furnace Multiplier by Means of Silver Disc Calorimeter

Observed Rate of Temperature Rise = 39.60 C/sec.

Cooling Correction = 2.80 C/sec.

Corrected Rate of Temp. Rise = 42.40 C/sec.

Calorimeter Constant = 0;151 cal/oC- m2

Radiant Intensity at Target = 42.5 x 0.151 cal/cm2 sec.

= 6.40 cal/cm2 sec.
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Furnace Multiplier cont'd

Solar Iitensity

E.M.F. = (E.M.F total - E.M.F. indirect) = (0.79 - 0.11)4

= 2.72 my.

Sensitivity of Pyrheliometer = 2.45 mv/cal cm2 min.

Solar Time = D.S.T. - 1:00 + (corr. for eq. of time and longitude)

2 -'15 - 1:00 + 0.19.4 = D4

Oos @ = 0.8e (corres. to 1:34)

I = ._______ = 1.29 cal/min cm2'
2.45 x 0.86

Multiplier - _4-. x 60 298
1.229

Several runs yielded an average multiplier of 289.

Temperature Rise due to Trsansmittance

Equation for temperature rise on the surface of a semi-infinite solid

when irradiated is given by:

4T k 2 (ref. 1, p 1l, eq. 1.10)

Polyethylene Properties

•rk = `J16.8 _ 1O-74 = 3.99 x 10- 2

t = 0.238 see. (time interval)

Cloth Properties

Transmissivity ( 'r)

White - 0.1610 D. Gray - 0.00

L. Gray - 0.0611 Black - 0.00

M. Gray - n OOlO

A•T 2 8. (IT) W (°o)

For results sce Table III,



TABLE II

TheoreticelL Teqperature Rise of Polyethylene Suwface

IDue to Cloth Conduction (OC); UOLC 0= 1

Time Intervals Cloth Color and Radiation Intensity:

cal/(see) (cm) 2

Sec. Dimensionless L White Light G Medium Gray
0 1=5.74 1=6.65 I=5.74c

Spacing = 0 cm

o 0 0 0 0
0.238 0 0 0 0
0.476 0. utA 0 0 0
0.714 0.0936 0.78 3,89 5.98
0.952 0.1?48 1.16 5.83 8.97
1.190 0.,1560 1.94 9.72 i5.0

Spacing 0.32 cm

0 0 0 0 0
0,238 0,0312 0 0 0
0.476 0.0624 0 0 0
0.714 0.0936 0 0 0
0.952 0.12,A8 0 0 0
1.190 0.1560 0.02 0.09 0.14

Spacing 0.51 cm

0 0 0 0 0
0,;38 0.0312 0 0 0
0,476 0.067A 0 0 0
0.714 0.0936 0 0 0
0.952 0.1248 0 0 0

.1,90 0.1560 0.01 0.06 0.09

Ratio .f c-nvection (to surzoundiags) to conduction rate (into saruple).



TABLE II I

Theoretical Temperature Rise of Polyethylene surface

Due to Transmittance through Cloth (°o)

Cloth Color, Radiation Intensity, I, and Transmittance,T

Time (sees) White Light Gr M:edium Gr§

I = 5.74 1 = 6.68 1 5.74

r= 0.161 T'= 0.o061 r= 0.010
028121.8 5.64 .806

0.476 18.1 7.98 1.14

0.714 22.4 9.87 1.42

0.952 25.6 1.l4 1.62

1.190 28.6 15.0 1.81
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TAZLE 1V

Theoretical, Temperature Rise of Polyethylene Surface

Due to Transmittance and Conduction ( 0C)

Time Intervals Cloth Color and Radiation Intensity

Cal/ (see) (cm) 2,

Sec Dimensionlessxc e White Lght Grs Medium Gra
I=5.74 I=6.65 I=5.74

Spacing = 0 cm

0 0 0 0 0
0.238 0.0312 12.8 5.64 0.81
0.476 0. 06P4 18.1 7.98 1.14
0.714 0.0936 23.18 13,.76 7.40
0.952 0.12A8 26.76 23.1.2 10.59
1.190 0.1560 30.55 30.61 16.90

Spacing = 0.32 cm

0 0 0 0 0
0.238 0.0312 12.8 5.64 0.806
0.476 0.062A 18.1 7.98 1.14
0.714 0.0936 22.4 9.87 1.42
0.952 0.12A8 25.6 13.4 1.62
1.190 0.1560 28.6Z 15.09 1.95

Spacing = 0,51 cm

0 0 0 0 0
O.238 0.031P 12.8 5.64 0.806
0.476 0. 062A 18.1 7.98 1.14
0.714 0.0936 22.4 9.87 1.42
0.952 0.1?A8 25.6 13.4 1.62
1.190 0!560 23.61 15.06 1.90
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